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Synge's monograph [1] and Rein’s paper [2] contain a very general method for reducing
the order of a system of Hamilton equations on the basis of a known integral, This
method is an effective means of dealing with the nonrelativistic problem of the motion
of two interacting charged particles in a homogeneous stationary magnetic field, In the
present paper the four derived integrals of motion (in addition to the energy integral)
are used to reduce this problem to one concerning the relative motion of one of the par-
ticles,

1, The Lagrange function of a system of two interacting charged particles in a homo-
geneous magnetic field is of the form

. - .
L= ml;‘ + Ln—zg—’— + —2?;— (ryxw) B+ % (raxry)-B— T rlfzraj (1.1)
In the coordinates of the center of mass and of relative motion
R _ mil' + mol's
my + my
the Lagrange function can be written as

L="MR?—2Mo,Y X' + Mo, (&Y — yX') +

, r=r;—r,; (1.2)
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+ Ygmr® 4 morg (xy’ — ya') — (1.3)
Here
_ myms . . (81 + eg) B
m= M = my + my, Oy = 5 (k) (1.4)
(Ellnz —_— egm.l) D (e1m22 + 62”142) B
Wy = —— T, 3 =

¢ (my + ma)? T 20 (ma+ m) mumy
The magnetic field has a 2-component only. Lagrangian (1, 3) appears in a form
asymmetrical with respect to the coordinates A and Y. This renders the X - coordinate
of the center of mass cyclical, By adding the total derivative with respect to time
2 Mo, (YX + XY'), to Lagrangian (1, 3), we can make Y cyclical instead of X,
The fact that (1, 3) contains a term with Wg indicates that the motion of the center
of mass and the relative motion are gyroscopically linked, while the term 2MWw, ¥ X"
indicates that one of the coordinates of the center of mass is not cyclical . From (1. 3)
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we see that in addition to the trivial case in which there is no magnetic field and a two-
body problem results, the variables are also immediately separable in the two particular
cases where Wy -0 or Wy~ 0, For Wg = 0 the problem breaks down into two inde-
pendent problems : that of the motion of the center of mass and the problem of relative
motion , Solution of the former is elementary, while the latter, by virtue of cylindrical
symmetry, becomes a two-dimensional problem apparently solvable by approximate
methods only, For Wj - O all three coordinates of the center of mass are cyclical, so
that the corresponding momenta are conserved, In this case the motion of the center
of mass and the relative motion remain linked, however, since LUQ#O .

In order to reduce the problem to a one-particle problem (i, e. to a sixth-order Hamil-
ton system) in the general case, it is necessary to convert from Lagrange function to the
Hamilton function

H= -2 o (Pe 4 2MaY + Moyy)® + (Py— Momz)* + P:% +
(414
—m’{(Px _I— mm3y)2 + (py_ mﬁ)sﬂ;)z + p22} + Vzﬁ_—;'ﬂf_r‘zs (1'5)
and to make use of the motion integrals
Px:POx’ Poy:Py+21W0)1X, P1=Poz (16)
sz—-xpu-{-YPx—XPu—}-Mml (Y2— X% =1L, 1.7)

The validity of (1. 6) and (1, 7) can be verified by writing out the corresponding
Hamilton functions, The known integrals can be used to find a canonical transformation
as a result of which the motion integral becomes a generalized momentum and the cor-
responding generalized coordinate turns out to be cyclical, Following the method pre-
sented in [1 and 2], one can carry out the canonical transformations in either a Cartesian
or a cylindrical coordinate system,

2, In the Cartesian coordinate system of (1, 5) the X - and 2 -coordinates of the cen-
ter of mass are cyclical ., Hence, it is first necessary to eliminate ~ and X from
(1. 7) using (1, 6) to obtain the integral (2.1)

P2 Poe
Fy(Py, pey Py, ¥, 7, ) = 535 + 2Moy? (Y + Siter ) +20y(y px—2py)=const

The generating function #; , which depends on the previous coordinates ¥, x, ¥, 2

and on the new coordinates T, g1, ¢z, s must satisfy Equation
(WVx + F1<6W1 , 6?;1 , 6;‘;1 Y, z, y) =0 (2'2)

Instead of solving Ham11ton-]acob1 equation (2. 2) with /] as the Harnilton function
( T plays the role of time), we can find # by solving the corresponding system of Hamil-
ton equations and computing the principal Hamilton function, By expressing it in terms
of the previous coordinates and their initial values for T= 0, we can find the generating
function Wy, One of the constants of integration over T should then be considered
the parameter of the problem, and the remaining ¢1 , 2, @3 as the new coordinates
(along with T), The generating function then assumes the form

Wi = (292 — yq1) sin 20,7 + (2g1 + y4s) cos 2047 + zg5 +

b Mo {[qoz +(r+ %)2] c0s 2017 — 2gy (¥ -+ zi;:n)} 2.3)
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where g is a constant, The relationship between the new variables and the initial

ones is given by the relations (2.4)
PZI Slijgﬁc;):‘t {( + 9’*1 ) c0Ss .2(!)1T —_ (]0} D= (y, Py —32
Px = §1 €08 20T - g, 8in 20,7, P, — (1Sin 2o -k g cos 20T
P = — €08 20,7 -+ y sin 2ent, Po = — &5in 20,7 — ¥ ¢0S 2o T

P; = 20, [(yg1— x9:) cos 2oq7 - (zqy -} y¢.) sin 20,7] -

2 P 2 P
+ E%%ﬂf{[qoz + (Y | ZA;ZJ_) J — 249 (Y . 211; ) cos _0)17}
The following condition is fulfilled in addition to (2.2) : the determinant consisting
of the mixed second partial derivatives of #; with respect to the new and initial coor-
dinates is not equal to zero,
Exchanging the roles of the new momenta and coordinates, we can write Hamiltonian
(1. 5) in the form

H =

{(p1 + mwyq2)? + (P2 — mwsqy)* + p.%} -+ —17,,—];:;7_7 +

2m
+ “2’1]&_[ {[ﬂ'[(ﬂth :t V2A[P-: - (2Mﬂ)1q0)2 + 4M('31 ((I1pz — qﬂpl)]; d*_
-+ []110)292+ 2M(1)1q0]2} (2'5)

The generalized momentum P, is here conserved and the problem has thus been
reduced to a onesparticle problem . From ¢2, 4) it follows that g3 , ¢ 2 in (2, 5) have
the same meaning as X, I/, since they are related by a rotation transformation relative
to the Z-axis,

z = ¢ c0s 20,7 + ¢, sin 20,7, ¥y = — ¢ sin 20,7 + ¢, cos 20,7 (2.6)
Here the deéendence of T on time is given by
v = 0H /0P,

where A is given by (2.5).

For the above particular cases W; = 0 and Wy = 0 Hamiltonian (2. 5) becomes sim-
ple : it lacks the square root of the expression containing ¢ 102~3 201 . For Wi =0
from (2,6) we have X=@1, Y = g2 and (2, 5) coincides with (1, 5) if we set

Py = 2Ma,q, FP,= V2MP,
in Hamiltonian (1, 5) .

If Wo=0 (here Wy = Wgz), then (2. 5) differs from that part of Hamiltonian (1. 5)
which with W= 0 describes the relative motion only in the sign of Wa . This is due
to conversion to coordinate system (2, 6) rotating with the constant angular velocity 2 Wy
in the direction opposite to that of cyclotronic rotation (T= T for Wy = 0),

In the absence of a magnetic field (i, e, when Wy = Wy = W), Expression (2. 5)
becomes the ordinary Hamiltonian of the Kepler problem ,

3 . In the cylindrical coordinate system

X = Rcosy, Y = Rsiny, == pcos ¢, y = psing (3.1)
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it is important to replace the angles ¥, © by the new angles

L B g (3.2)
and to make use of a Lagrangian differing from (1. 3) by the rotal derivative with respect
to time Mo (XY 4 YX)

This Lagrangian, being symmerrical in A, ¥ and X, J, has the two cyclical coor-
dinates B and £ in variabtes (3.2), The corresponding tlamilton function is of the form

pfl—pe 7 ! 4 * 2
H_—— -——I {(p + ﬂfﬂhpS]nd)z “ (—'/[f*q '“'{" 1"{(!)11{ el A{(l)?_p ¢OS OL) —‘}' Pz

9 Py -t pB
+ 3_;,; {Pp' + pt (—3———“
It can be shown that ps = L, (see (1.T)).

1, 8) yield = Lo 2 .
(1. 6yt Fy(P,, Pas R) ”:ﬁ[ {P}%— (Lﬁw———Mmllf) } = const (3.4)

As above, we can find the generating function

Wae MO (B2 | Ry?) cos @yt — 2RR, cos (& — g5 + 0r0)} +

2sin o1t 35
+ Lo (= go) -+ pge - 245 (3-9)
Here T, @4, J5, g5 are new coordinates and }?O is a constant, The function

— TROY30 ) } -+ V;;:- = {(3.%)

After B has been eliminated integrals

Wy satisfies Equation W .
2 4 W (S, St R) =0 (3.0)

The relationship batween the old and new variables is given by the relations
P, = Mo {R cos ;T — Ry cos (0 — g, + 0;7)} (sin wy1)?
a = Ly — 2MoRoRsinf@ — g + 0y7) (sin o, 7)™
P =1, Mo® {R* + R — 2RR, cos (a — g,)} (sine,1)"? (3.7)
Po = 4g Pz = g5, Pa= — Ps = =2, Pg = Pg

Exehanging the roles of D4, ¢4 and Ps, @s in this case, we can write Hamilton
function (3. 3) in the new variables, using the previous notation for the angle (Q instead

ofge) g _ éinﬁ{pa'*_plz n (PaJr mm«mmsp) }_;_ﬁexez +

Vit e
ZM{[M(»gpcosoc + + McolR.,:l -+ [Mmgp sino 4+
+ (2Mpf_[ v

x/s
DNl @)
Here @ 1is the integral of motion,
In order to compare (2, 5) and (3, 8) it is necessary to convert to the cylindrical coor-~
dinate syétem in (2, 5) and to apply the canonijcal transformation with the generating

function P

Wy =ap, -+ 5 s~ 2Morg0 =dp,+p'p,+z'p, -+ vP: (3.9)
Fi2l

V2MP_+iMop,

Here the polar angle ¢ ‘is related to the new angle Q. by Expression

_2M oo (3.10)
V2MP_ + iMop,
while the remaining variables (except T) are not transformed, so that instead of (2. 5)
we have (omitting the primes)

oL =q)—-3 sin—?
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p,, + 2 Moy + Mgt

H= o () + or—on p, + MO g

+P,+m2pcosoc VEMP. ¥ 4Maop, +-V—Pi_+-—zz= (3.11)
For T' from (3,9) we have

(3.12)
2M g, 2M o190 1

= T - = sin~? sin! Y
Zon i V2MP, + 4Mop, V2MP, 4 4Mmpg }2‘”1

Returning to (3, 8), let us transform this Hamiltonian by means of the generating func-

tion P
! : P.— Lo - Mo Ry?

— -t d ~ ’ L ; ’ ’
W :!:pS o e ey P T (Pt L) 0P, Pt

+ T (PA; - 4(})1[4}) (3.13)
Here

p’c’:P‘t“"émy Lo, Pa'“;Paﬂ—Le

2
o = o F cos™t Pa — Lot Moo (3.i4)
Ro V2MP, + 4Moy (p, — Lo)
and the remaining variables (except T) are not transformed,

As a result of this transformation, (3, 8) yields Hamiltonian function (3, 11) which was
previously derived from (2, 5), We have thus succeeded in reducing the twelfth-order
systemn of Hamilton equations to a sixth-order systemn, i, e, to the problem of relative
motion, For Wp # 0 this motion is related to the motion of the center of mass by way
of P_ in(3,11)or P_,q in(2.5) and P_, Lo, By in(3.8).

4 ., The effect of the center-of-mass motion on the relative motion has as one of its
results the fact that the systems of canonical equations corresponding to Hamiltonians
(2. 8), (3.8), or (3,11) have a time-independent solution if Wy #0 .

Making wse of (3,11), we can write the equations of motion in the form

€182Z . R

L =@spsina y 2MP.+ 4Mo 44

= Grpayre  Pe T owsice)RMP o AMop, (1)
mp” = 735 (:';_) — (Mmos? + May?) p— o, cosa ) 2MP- -+ 4Marp, +wf.‘f%57

; )

(4.2)

. _ 2M©10:p cOS & 4.3

“ s - VZMPB_¥ 4Maorp, (4.3)

. M, cosa '

=14 2 4.4

N " Vb, T iblonp, (34)

This system has the aivial solution o = p, = ¢ = z = z =0 and =0 or

=T, The values of @ and P are determined by equations (4, 2) and (4, 3) with
zero as their left sides , This solution can be illustrated by means of a concrete exam-
ple . 1In fact, (1. 6), (2. 4), (2.6), (3.10) and (4. 4) imply that the particles in this cace
are always situated at fixed points on a straight line which rotates about one of its points
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with the coordinates Py, /2 Moy, — Py,/ 2 Mw, with the constant angular velocity
—20, == 20 o050 (2 MP: + 4 Moyps)~>

and with the initial phase
2Mwnqa
VZMP_ + dMoypo
Here Pq, P are trivial solutions of (4, 2) and (4, 3). We note that for €;, €5 >0
the solution is "longitudinally” unstable, which follows from the equation for 2 (4. 1),

Let us analyze the case where o, = 0 (¢; = —e; = —e <) in more detail. Here
Py = mwp?  and the equilibrium value of P is given by Equation
—e?[p— Moy — )/ 2MP, =0 (4.5)

In order to consider the existence and stability of the time-independent solution it is
convenient to convert to the Lagrange function

m o2
= — (22 -2 ‘2 oy .

5 (@ +1y + 2°%) + mos (zy yz)+Vx——~—~2+y2+zg

= gar {(Mow — Py )+ (Me,y + P (4.6)
and to investigate the behavior of equipotential surfaces of the form
2
U,y )= el [(z — =) 42 — % (4.7
2 Vat by zt

making use of the energy integral, In contrast to (4 6), in (4, 7) we chose a coordinate
system in which Po, = 0, 2y = Poy/Mw, > 0. Here Xg has a simple physical meaning
in the scattering problem : it is the distance in the X'}/ plane between the centers of
the Larmor circles for £ =—~% (i, e, a kind of impact parameter), The latter is easily
proved by substituting into integral (1, 6) written in the form ( Wy = 0)

muy1’ - maye’ A Moy (1) — x5) = -Poy
the solution for noninteracting particles in a magnetic field which is valid for the scat-
tering problem for ¢ ==,
To begin with, we can show that Equation

M2 2
U@ 0,0)= "5 (z— )t —

=E (4.8)

[zl
has one negative and three positive solutions if
4 Mo)zzz'ga
_ﬁ—?~>1, U1 <L ELU; (4.9)
where
Uy = —aMw? 2 [1 — cosl/z(m — 0)]cos Y5 (n — 68) O (4.10)
Uy = — ¥/sMog?re® [1 — cos /g (1 4- 6)] cos Vg (n < 0) (4.11)
27 e?
cos@=—1 +—2—'m (4.12)
From (4, 7) it is evident that
U /oy >0, aU oz >0, Uz, y, 4 o) >0

Hence , for (/1 <7 <{/5 the equipotential surface breaks up into two surfaces, one
of which is closed and contains the origin of the coordinate system, while the other
contains the minimum point of U(x, Y, ) with the coordinates X=Xy, ¥ = &= 0,
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L= Yyrg 11 1 2 cos T3 (1 — 0)] (4.13)
and is closed if {/; <% <0 and open for 2 - +%® if 5> % >0, which is possible
provided that 2 Maostxy?

27T >

which follows from (4. 10), (4. 12). The case where /5> 0 means that three-dimen-
sional finite motion about the origin is possible, although the total energy is larger than
the minimum of V(x, ¥, &) for 2 =£®, For Uy <# <0, in addition to the ordi-
nary (Keplerian) finite motion about the origin it is also possible to have finite motion
about the point X = Xy (4.13), ¥~ & = 0. In considering trajectories it should be
borne in mind that inclusion of the term
may, (zy" — yz')

in Lagrangian (4, 6) naturally imposes an additional limitation on transverse motion
across the magnetic field ,

Turning back to Equation (4, 5), we can readily show that it determines the coordinates
of the maximum and minimum of /(X , 0, 0) in accordance with (4, 8), It has two
positive roots if condition (4, 9), where

Tp = — VI—ZM_PT/ Mo,

is fulfilled,

Here X4 (4, 13) is a large root associated with a stable trivial solution, Expressions
(4. 9) and (4, 13) likewise imply that

T > (2 Mc/BY)' (4.14)

It should be noted that the uniform rotation of the particles which corresponded to the
time-independent solution ot system (4, 1) to (4, 4) degenerates with W; = 0 into
straight-line motion with constant velocity, This can be illustrated as follows, Let
particles with charges of opposite sign €; = — &3 =—€ move across a homogeneous
magnetic field at the same velocity V in the direction perpendicular to the radius vec-
tor connecting these particles and lying entirely in the X I/ plane .

For any given field and velocity there always exists a radius vector of a length such
that the Lorentz force for both particles is balanced by the Coulomb force

eBV/c = ¢2/p® (4.15)

where P is given by Equation (4.5) .
Making use of (4. 14) and (4,15) , we can write the stability condition in the form

l/:!
V<e < i)

From (4. 14) and (4, 16) it follows that as 5 tends to zero, the distance X, between
a stable pair of particles tends to infinity and their velocity to zero,. Only in suffici-
ently strong (10~ - 10 G) magnetic fields can the velocity of a stable pair (a positive
and negative ion, an electron and an ion or an electron and a hole) become comparable
with the mean thermal velocity and the pair size with the free path,

As we see from (4,6), for Fox = Fpy = 0 the problem reduces to a plane one by vir-
tue of cylindrical symmetry, For Foy . Foy #0 the problem can be reduced to quad-
ratures in the particular plane case W, = Wg=0, & =& =0 this solution is obvi-
ously stable in 2, What we have in this case is a Liouville system [3], and in elliptical
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coordinates with the origin at the point (X = X5, I/ = 0) the equation of the trajectory

is of the form e n
S [/ (\cosh;)r1 *dg = S [-—f (cosm)| L2 dn (4.17)
Lo Ny
M aa2ro? Mo2r0? v £2
f goshl) = — - fo??:i(l—cosh‘ L+ (#ﬂﬁ + *rfosh‘ﬁ + "z_o‘co:hg +8

Here Y 0 are integration constants, In fact, it is possible here that the motion is
along ellipses with foci at the origin and at the point X = 2Xg5, ¥ = 0. This follows
from the theorem of Bonnet [3], It can also be shown that in the three-dimensional case
for £ > U5 the equipotential surfaces form open traps near the origin, It is intetesting
in this case to estimate the duration of capture in such a trap of a particle approaching
from infinity with Z > 0., In terms of the two-body problem, capture constitutes the
formation of a bound pair of particles lying at infinity 2 = % at £ =% ®_, This
problem requires special study and will not be considered here,

We have thus derived integrals of motion and used them to carry out canonical trans-
formations whereby the classical nonrelativistic problem of motion of two interacting
charged particles in a homogeneous stationary magnetic field is reduced to a one-parti-
cle relative motion problem for arbitrary charges and masses of both particles, We have
shown that with the exception of the case where the specific charges are equal, the
motion of the center of mass affects the relative motion, In the particular case where
the particles have charges of opposite sign but the same absolute value there arise stable
equilibrium states not of the ordinary Keplerian type,
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